
Cray MPT:
MPI on the Cray XT

Justin L. Whitt
jwhitt@utk.edu
Glenn Brook
glenn-brook@tennessee.edu
Mark Fahey, Group Leader
mfahey@utk.edu

NICS Scientific Computing Group

OLCF Spring ‘11
Oak Ridge, TN
March 7 – 11, 2011

Introduction

2 OLCF Spring ‘11

Cray MPT – Message Passing Toolkit
• Cray’s MPI library (and SHMEM library)

– Optimized MPICH-2 for Cray interconnects

• Multiple interconnect devices
– SMP – Shared memory communication on nodes
– Portals – Efficient message passing between nodes

• Multiple message protocols
– Short messages: eager protocol
–  Long messages: rendezvous protocol (default), eager protocol

• Optimized collective communication algorithms
• Automatic transitions between devices, protocols, and

algorithms (configurable via environment variables)
3 OLCF Spring ‘11

Cray Collective Communications
• Improved performance over standard MPICH2
• Work for any communicator (not just MPI_COMM_WORLD)
• User-adjustable thresholds for algorithm selection
• Cray Optimized Collectives

– MPI_Allgather (small messages) & MPI_Allgatherv
– MPI_Alltoall (optimized exchange order)
– MPI_Alltoallv / MPI_Alltoallw (windowing algorithm)

• Cray Optimized SMP-aware Collectives: MPI_Allreduce,
MPI_Barrier, MPI_Bcast, MPI_Reduce

• Are enabled by default but can be selectively disabled via
MPICH_COLL_OPT_OFF

4 OLCF Spring ‘11

SMP-aware Collectives – Allreduce Example

July 2009 Slide 5

Identify Node-Captain rank.
 Perform a local on-node
 reduction to node-captain.
NO network traffic.

STEP 1
Perform a local on-node
 bcast. NO network traffic.

STEP 3
Perform an Allreduce with node
-captains only. This reduces the
 process count by a factor of 8 on
 XT5.

STEP 2

OLCF Spring ‘11 Slide 5

Slide 6

Performance Comparison of MPI_Allreduce

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Message Size

Percent Improvement of SMP-aware MPI_Allreduce
(compared to MPICH2 algorithm)
 1024 PEs on an Istanbul System

Allreduce

Default vs MPICH_COLL_OPT_OFF=MPI_Allreduce

Percent Improvement of SMP-aware MPI_Allreduce
(compared to MPICH2 algorithm)
 1024 PEs on an Istanbul System

OLCF Spring ‘11

Slide 7

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Message Size

Percent Improvement of SMP-aware MPI_Bcast
(compared to MPICH2 algorithm)
 1024 PEs on an Istanbul System

Bcast

Performance Comparison of MPI_Bcast
Default vs MPICH_COLL_OPT_OFF=MPI_Bcast

Percent Improvement of SMP-aware MPI_Bcast
(compared to MPICH2 algorithm)
 1024 PEs on an Istanbul System

OLCF Spring ‘11

Slide 8

Performance Comparison of MPI_Reduce
Default vs MPICH_COLL_OPT_OFF=MPI_Reduce

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Message Size

Percent Improvement of SMP-aware MPI_Reduce
(compared to MPICH2 algorithm)
 1024 PEs on an Istanbul System

Reduce

Percent Improvement of SMP-aware MPI_Reduce
(compared to MPICH2 algorithm)
 1024 PEs on an Istanbul System

OLCF Spring ‘11

Slide 9

Performance Comparison of MPI_Allgather
Default vs MPICH_COLL_OPT_OFF=MPI_Allgather

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1 2 4 8 16 32 64 128 256 512 1024 2048

Message Size

Percent Improvement of Optimized MPI_Allgather
(compared to MPICH2 algorithm)
 1024 PEs on an Istanbul System

Allgather

Percent Improvement of Optimized MPI_Allgather
(compared to MPICH2 algorithm)
 1024 PEs on an Istanbul System

OLCF Spring ‘11

Short Message Eager Protocol
• Sender "pushes" message to receiver

– Sender assumes receiver can handle message and blindly
transmits

• If matching receive is posted, receiver
–  routes incoming data directly into specified receive buffer
–  posts notification event to other event queue

• If no matching receive is posted, receiver
–  routes incoming data into unexpected message buffer
–  posts two events to unexpected event queue
–  copies data into specified receive buffer when matching

receive is posted

• Message size <= MPICH_MAX_SHORT_MSG_SIZE bytes
10 OLCF Spring ‘11

Long Message Rendezvous Protocol

• Receiver "pulls" message from sender
• Sender notifies receiver about waiting message via a

small header packet
• Receiver requests message from sender after matching

receive is posted
• Receiver routes incoming data directly into specified

receive buffer
• Message size > MPICH_MAX_SHORT_MSG_SIZE bytes

11 OLCF Spring ‘11

Long Message Eager Protocol
• Sender assumes receiver will handle message

appropriately or will request retransmission
– Sender blindly transmits data to receiver

• If matching receive is posted, receiver
–  routes incoming data directly into specified receive buffer
–  sends completion acknowledgement to sender

• If no matching receive is posted, receiver
–  creates a long protocol match entry
–  requests retransmission when matching receive is posted
–  routes incoming data directly into specified receive buffer

• Enabled using MPICH_PTLS_EAGER_LONG
• CAUTION: blocking sends and unexpected messages

12 OLCF Spring ‘11

Configuration

13 OLCF Spring ‘11

MPI Environment Variables
• Many environment variables available to tune MPI

performance
– Well documented on the MPI man page – Read it!
– Default settings generally focus on attaining the best performance

for most codes – not necessarily your code!

• The MPI environment can change between MPT versions
– Read the MPI man page and Cray documentation!

• MPICH_ENV_DISPLAY – set to display the MPI environment
during MPI initialization

• MPICH_VERSION_DISPLAY - set to display the version of
Cray MPT during MPI initialization

14 OLCF Spring ‘11

Auto-Scaling MPI Environment Variables
• Key MPI variables change their default values depending

on job size (total number of ranks)
–  MPICH_MAX_SHORT_MSG_SIZE – threshold for short message eager

protocol
–  MPICH_PTL_UNEX_EVENTS – number of entries in unexpected event

queue
–  MPICH_UNEX_BUFFER_SIZE – buffer space available for unexpected

messages
–  MPICH_PTL_OTHER_EVENTS – number of entries in other event queue

(send-side and expected events)

• Users can override defaults with environment variables
• Fine-tuning these variables may help performance
• MPI errors due to insufficiencies indicate which variables

need to be increased
15 OLCF Spring ‘11

Auto-Scaling MPI Environment Variables

• Default values for various MPI job sizes:

16 OLCF Spring ‘11

MPI Environment Variable Name 1,000 PEs 10,000 PEs 50,000 PEs 100,000 PEs

MPICH_MAX_SHORT_MSG_SIZE
(This size determines whether
 the message uses the Eager or
 Rendezvous protocol)

128,000 B 20,480 4096 2048

MPICH_UNEX_BUFFER_SIZE
(The buffer allocated to hold the
 unexpected Eager data)

60 MB 60 MB 150 MB 260 MB

MPICH_PTL_UNEX_EVENTS
(Portals generates two events for
 each unexpected message
 received)

20,480
events

22,000 110,000 220,000

MPICH_PTL_OTHER_EVENTS
(Portals send-side and expected
 events)

2048
events

2500 12,500 25,000

MPT Environment Variables – Portals

• MPICH_PTL_MATCH_OFF – set to disable registration of
receive requests within portals
– Allows MPI to perform message matching for the portals device
– May be beneficial when an application exhausts internal portals

resources or when running latency-sensitive applications

• MPICH_PTL_SEND_CREDITS – enables flow control to
prevent the Portals event queue from being overrun
– Value of -1 should prevent queue overflow in any situation
– Only be used as needed – flow control negatively impacts

performance

17 OLCF Spring ‘11

MPT Environment Variables – Portals

• MPICH_PTL_MEMD_LIMIT – maximum number of Portals
Matching Entries (MEs) and Message Descriptors (MDs)
– May need to increase if pre-posting more than 2048 MPI receives
–  Increase if abort with PtlMEMDPost() failed: PTL_NO_SPACE
– Default: 2048 Minimum: 2048 Maximum: 65534
–  If you increase MPICH_PTL_MEMD_LIMIT, also increase

MPICH_PTL_OTHER_EVENTS to the same limit

18 OLCF Spring ‘11

Environment Variables
MPICH_SMP_OFF
• If set, disable the on-node SMP device and use the

Portals device for all MPI message transfers
• Use in a rare cases where code benefits from using

Portals matching instead of MPI matching.
• Default: Not enabled.
• Useful for debugging reproducibility issues.

19 OLCF Spring ‘11

Environment Variables
MPICH_FAST_MEMCPY
• If set, enables an optimized memcpy routine in MPI. The

optimized routine is used for local memory copies in the
point-to-point and collective MPI operations.
–  This can help performance of some collectives that send large

(256K and greater) messages.
• Collectives are almost always faster
• Speedup varies by message size
• Example: If message sizes are known to be greater than 1 megabyte, then

an optimized memcpy can be used that works well for larges sizes, but may
not work well for smaller sizes.

– Default is not enabled (because there are a few cases that
experience performance degradation)

– Ex: PHASTA at 2048 processes: reduction from 262 s to 195 s

20 OLCF Spring ‘11

Environment Variables
MPICH_COLL_SYNC
• If set, a Barrier is performed at the beginning of each

specified MPI collective function. This forces all processes
participating in that collective to sync up before the
collective can begin.
–  To enable this feature for all MPI collectives, set the value to 1. Default is off.

• Can be enabled for a selected list of MPI collectives
• There are rare examples where this helps

–  If the code has lots of collectives and MPI profiling shows
imbalance (lots of sync time), this may help

– Ex: PHASTA (CFD-turbulent flows) many MPI_Allreduce calls
• At 2048 processes : reduction from 262 sec to 218 sec.

– Ex: But slowed down NekTarG (CFD-Blood Flow) by about 7%
21 OLCF Spring ‘11

Input/Output
• Sometimes I/O causes scalability issues

–  For example, cleaning up some writes improved weak scaling
of the CFD code NektarG from 70% to 95% at 1K to 8K cores

• Set file striping appropriately
–  The default stripe count will almost always be suboptimal
–  The default stripe size is usually fine.
– Once a file is written, the striping information is set

• Stripe input directories before staging data
• Stripe output directories before writing data

– Stripe for your I/O pattern
• Many-many – narrow stripes Many-one – wide stripes

• Reduce output to stdout
– Remove debugging reports (e.g. “Hello from rank n of N”)

22 OLCF Spring ‘11

Environment Variables
MPICH_MPIIO_HINTS
•  If set, overrides the default value of

one or more MPI-IO hints. This also
overrides any value set in the
application code with calls to the
MPI_Info_set routine.

• Hints are applied to the file when it
is opened with an MPI_File_open()
call.

•  MPICH_MPIIO_HINTS_DISPLAY
–  If set, causes rank 0 in the participating

communicator to display the names and
values of all MPI-IO hints that are set for
the file being opened with the
MPI_File_open call.

Default settings:
PE 0: MPIIO hints for

c2F.TILT3d.hdf5:

 cb_buffer_size = 16777216

 romio_cb_read = automatic

 romio_cb_write = automatic

 cb_nodes = #nodes/8

 romio_no_indep_rw = false

 ind_rd_buffer_size = 4194304

 ind_wr_buffer_size = 524288

 romio_ds_read = automatic

 romio_ds_write = automatic

 direct_io = false

 cb_config_list = *:1

23 OLCF Spring ‘11

Environment Variables
MPICH_MPIIO_HINTS (cont.)
Examples:
•  Syntax

–  export MPICH_MPIIO_HINTS=data.hdf5:direct_io=true

•  For FlashIO at 5000 processes writing out 500MB per MPI thread, the following
improved performance:
romio_cb_write = "ENABLE" 
romio_cb_read = "ENABLE” 
cb_buffer_size = 32M

–  When enаbled, аll collective reаds/writes will use collective buffering. When disаbled, аll collective reаds/writes
will be serviced with individuаl operаtions by eаch process. When set to аutomаtic, ROMIO will use heuristics
to determine when to enаble the optimizаtion.

•  For S3D at 10K cores:
romio_ds_write = ‘disable' - specifies if data sieving is to be done on read.
Dаtа sieving is а technique for efficiently аccessing noncontiguous regions of dаtа
romio_no_indep_rw = 'true' - specifies whether deferred open is used.

–  Romio docs say that this indicates no independent reаd or write operаtions will be performed. This cаn be used
to limit the number of processes thаt open the file.

24 OLCF Spring ‘11

Slide 25

MPI-IO Improvements

  MPI-IO collective buffering

   MPICH_MPIIO_CB_ALIGN=0

   Divides the I/O workload equally among all aggregators

   Inefficient if multiple aggregators reference the same physical I/O block

   Default setting in MPT 3.2 and prior versions

   MPICH_MPIIO_CB_ALIGN=1

   Divides the I/O workload up among the aggregators based on physical I/O

 boundaries and the size of the I/O request

   Allows only one aggregator access to any stripe on a single I/O call

   Available in MPT 3.1

   MPICH_MPIIO_CB_ALIGN=2

   Divides the I/O workload into Lustre stripe-sized groups and assigns them

 to aggregators

   Persistent across multiple I/O calls, so each aggregator always accesses

 the same set of stripes and no other aggregator accesses those stripes

   Minimizes Lustre file system lock contention

   Default setting in MPT 3.3

OLCF Spring ‘11

Rank Placement

•  In some cases, changing how the processes are laid out on the
machine may affect performance by relieving synchronization/
imbalance time.

•  The default is currently SMP-style placement. This means that for a
multi-node core, sequential MPI ranks are placed on the same node.
–  In general, MPI codes perform better using SMP placement - Nearest neighbor
–  Collectives have been optimized to be SMP aware

•  For example, a 12-process job launched on a XT5 node with 2 hex-
core processors would be placed as:

PROCESSOR 0 1
RANK 0,1,2,3,4,5 6,7,8,9,10,11

26 OLCF Spring ‘11

Rank Placement

•  The default ordering can be changed using the following
environment variable:

MPICH_RANK_REORDER_METHOD

•  These are the different values that you can set it to:
0: Round-robin placement – Sequential ranks are placed on the next node in

the list. Placement starts over with the first node upon reaching the end of the list.
1: SMP-style placement – Sequential ranks fill up each node before moving

to the next.
2: Folded rank placement – Similar to round-robin placement except that each pass

 over the node list is in the opposite direction of the previous pass.
3: Custom ordering. The ordering is specified in a file named MPICH_RANK_ORDER.

• When is this useful?
–  Point-to-point communication consumes a significant fraction of program time and a

load imbalance detected
–  Also shown to help for collectives (alltoall) on subcommunicators (GYRO)
–  Spread out IO across nodes (POP)

27 OLCF Spring ‘11

Rank Order and CrayPAT

• One can also use the CrayPat performance measurement
tools to generate a suggested custom ordering.
– Available if MPI functions traced (-g mpi or –O apa)
–  pat_build –O apa my_program

• see Examples section of pat_build man page

• pat_report options:
– mpi_sm_rank_order

• Uses message data from tracing MPI to generate suggested MPI rank order.
Requires the program to be instrumented using the pat_build -g mpi option.

– mpi_rank_order
• Uses time in user functions, or alternatively, any other metric specified by

using the -s mro_metric options, to generate suggested MPI rank order.
28 OLCF Spring ‘11

Reordering Workflow

• module load xt-craypat
• Rebuild your code
•  pat_build –O apa a.out
• Run a.out+pat
•  pat_report –Ompi_sm_rank_order a.out+pat+…sdt/ > pat.report
• Creates MPICH_RANK_REORDER_METHOD.x file
•  Then set env var MPICH_RANK_REORDER_METHOD=3 AND
•  Link the file MPICH_RANK_ORDER.x to MPICH_RANK_ORDER
• Rerun code

29 OLCF Spring ‘11

CrayPAT example
Table 1: Suggested MPI Rank Order

 Eight cores per node: USER Samp per node

 Rank Max Max/ Avg Avg/ Max Node

Order USER Samp SMP USER Samp SMP Ranks

 d 17062 97.6% 16907 100.0% 832,328,820,797,113,478,898,600

 2 17213 98.4% 16907 100.0% 53,202,309,458,565,714,821,970

 0 17282 98.8% 16907 100.0% 53,181,309,437,565,693,821,949

 1 17489 100.0% 16907 100.0% 0,1,2,3,4,5,6,7

30

• This suggests that
1.  the custom ordering “d” might be the best
2.  Folded-rank next best
3.  Round-robin 3rd best
4.  Default ordering last

OLCF Spring ‘11

Reordering example
GYRO
• GYRO 8.0

–  B3-GTC problem with 1024 processes

• Run with alternate MPI orderings
–  Custom: profiled with with –O apa and used reordering file

MPICH_RANK_REORDER.d

31

Reorder method Comm. time
Default 11.26s

0 – round-robin 6.94s
2 – folded-rank 6.68s

d-custom from apa 8.03s

CrayPAT
suggestion
almost right!

OLCF Spring ‘11

Reordering example
TGYRO
• TGYRO 1.0

– Steady state turbulent transport code using GYRO, NEO, TGLF
components

• ASTRA test case
–  Tested MPI orderings at large scale
– Originally testing weak-scaling, but found reordering very useful

32

Reorder
method

TGYRO wall time (min)
20480 40960 81920

Default 99m 104m 105m
Round-robin 66m 63m 72m

Huge win!

OLCF Spring ‘11

Tips & Recommendations

33 OLCF Spring ‘11

Cray MPT – General Tips
• Always use the compiler wrappers to compile!

– Always specify the compiler wrappers when running configure!

• Use a recent version of MPT (current 5.2.0)
– Significant improvements (e.g. allgatherv in 4.0.0 and later)

• Update environment variables for new versions of MPT
– Updated algorithms might have different requirements
– Current versions attempt to set the right buffer sizes at launch

based on job size rather than using static settings
– Suggestion: if you use env vars based on previous versions, try

using recent verisons w/o env vars

• Status: Kraken: default 5.0.0 JaguarPF: default 4.0.0

34 OLCF Spring ‘11

Cray MPT – Messaging Tips
• Performs best when every message is expected prior to

receipt, but ensuring such can be difficult or impossible
• Special handling of unexpected messages for both MPI

and Portals to maximize performance and scalability
• Excessively bad application behavior can exhaust

available resources for handling unexpected messages
and events, resulting in application termination.
– Short term fix: allocate additional resources via environment

variables
–  Long term fix: modify application to improve communication

behavior

35 OLCF Spring ‘11

Portals Errors

36 OLCF Spring ‘11

Error Description / Cause Suggested Fix
PTL_PT_NO_ENTRY Memory mapping error /

improper stack initialization
Request refund and resubmit
job

PTL_NAL_FAILED Network layer error / node
or network failure

Request refund and resubmit
job

PTL_EQ_DROPPED Event dropped from
queue / insufficient space
in queue

Increase resources with
environment variables, change
application communication
profile

PTL_SEGV  Invalid user address
supplied to portals

Fix invalid pointers in
application code

PTL_PT_VAL_FAILED   Invalid address / invalid
buffer parameter in MPI

Fix invalid pointers in
application code (MPI)

PTL_NO_SPACE  Insufficient memory for
internal buffers

Reduce app. memory, increase
MPICH_PTL_MEMD_LIMIT,
set MPICH_PTL_MATCH_OFF

1.  Fix any load imbalance – consider decomposition and rank order
2.  Fix your hotspots

1.  Communication
•  Pre-post receives
•  Overlap computation and communication
•  Reduce collectives
•  Adjust MPI environment variables
•  Use rank reordering

2.  Computation
•  Examine the hardware counters and compiler feedback
•  Adjust the compiler flags, directives, or code structure to improve

 performance
3.  I/O

•  Stripe files/directories appropriately
•  Use methods that scale

•  MPI-IO or Subsetting
At each step, check your answers and performance.
Between each step, gather your data again.

Step by Step

Slide 37 OLCF Spring ‘11

MPI Programming Techniques
Pre-posting receives
• If possible, pre-post receives before the matching sends

– Optimization technique for all MPICH installations (not just MPT)
– Not sufficient to simply put receive immediately before send
– Put significant amount of computation between receive-send pair

• Do not go crazy pre-posting receives. You can (and will)
overrun the resources available to Portals.

• Code example
–  Halo update – with four buffers (n,s,e,w), post all receive requests as early as

possible. Makes a big difference on CNL (not as important on Catamount).

38 OLCF Spring ‘11

MPI Programming Techniques
Example: 9-pt stencil pseudo-code
Basic

9-pt computation

Update ghost cell
boundaries

East/West IRECV,
ISEND, WAITALL

North/South IRECV,
ISEND, WAITALL

Maximal Irecv preposting
Prepost all IRECV

9-pt computation

Update ghost cell
boundaries

East/West ISEND,
Wait on E/W IRECV
only

North/South ISEND,
Wait on the rest

 *Makes use of temporary buffers

39 OLCF Spring ‘11

MPI Programming Techniques
Overlapping communication with computation
•  Use non-blocking send/recvs to overlap communication

with computation whenever possible
–  Typical pattern:

1.   Pre-post non-blocking receive
2.   Compute a “reasonable” amount to ensure effective pre-

posting
3.   Post non-blocking send
4.   Compute as much as possible to maximize overlap of comm.

and comp.
5.   Wait on communication to finish only when absolutely

necessary

40 OLCF Spring ‘11

MPI Programming Techniques
Overlapping communication with computation
•  In some cases, it may be better to replace collective

operations with point-to-point communications to overlap
communication with computation
–  Caution: Do not blindly reprogram every collective by hand
–  Concentrate on the parts of your algorithm with significant

amounts of computation that can overlap with the point-to-point
communications when a [blocking] collective is replaced

41 OLCF Spring ‘11

MPI Programming Techniques
Reduce Collective Communications
• Avoid using collective communications whenever possible

– MPI collectives are blocking, leading to large sync times
– Collective communication can cripple scalability

• Use algorithms that only require local info when possible
– Consider duplicating computation to reduce communication

• When an algorithm must communicate “globally”:
– Use MPT collectives that have been optimized by Cray
– Minimize the scope of the collective operation
– Minimize the number of collectives through aggregation
– Consider implementing a non-blocking collective only if justified

after careful analysis

42 OLCF Spring ‘11

MPI Programming Techniques
Aggregating data
•  For very small buffers, aggregate data into fewer MPI calls

(especially for collectives)
–  1 all-to-all with an array of 3 reals is clearly better than 3 all-to-alls with 1 real
–  Do not aggregate too much. The MPI protocol switches from a short (eager)

protocol to a long message protocol using a receiver pull method once the
message is larger than the eager limit. This limit is by default 128000 bytes, but
it can be changed with the MPICH_MAX_SHORT_MSG_SIZE environment
variable. The optimal size for messages most of the time is less than the eager
limit.

•  Example – DNS
–  Turbulence code (DNS) replaced 3 AllGatherv’s by one with a larger message

resulting in 25% less runtime for one routine
43 OLCF Spring ‘11

MPI Programming Techniques
Aggregating data: Example from CFD

Original  

for (index = 0; index < No; index++){ 
 double tmp; 
 tmp = 0.0; 
 out_area[index] = Bndry_Area_out(A,
labels[index]); 
 gdsum(&outlet_area[index],1,&tmp); 
}  
for (index = 0; index < Ni; index++){ 
 double tmp; 
 tmp = 0.0; 
 in_area[index] = Bndry_Area_in(A,
labels[index]); 
 gdsum(&inlet_area[index],1,&tmp);  
}

void gdsum (double *x, int n, double *work) 
{ 
 register int i; 
 MPI_Allreduce (x, work, n, MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD); 
 /* *x = *work; */ 
 dcopy(n,work,1,x,1); 
 return; 
}

Improved  

 for (index = 0; index < No; index++){ 
 out_area[index] = Bndry_Area_out(A,
labels[index]); 
 }

 /* Get gdsum out of for loop */ 
 tmp = new double[No]; 
 gdsum (outlet_area, No, tmp);  
 delete tmp; 

 for (index = 0; index < Nin; index++){ 
 in_area[index] = Bndry_Area_in(A,
labels[index]); 
 }

 /* Get gdsum out of for loop */ 
 tmp = new double[Ni]; 
 gdsum(inlet_area, Ni, tmp);  
 delete tmp;

44 OLCF Spring ‘11

Hybridization

45 OLCF Spring ‘11

OpenMP
• When does it pay to add/use OpenMP in my MPI code?

– Add/use OpenMP when code is network bound
– As collective and/or point-to-point time increasingly becomes a

problem, use threading to keep number of MPI processes per
node to a minimum

– Be careful adding OpenMP to memory bound codes – can hurt
performance

– Be careful to match memory affinity to thread affinity
• Pre-touch memory from correct thread after allocation

–  It is code/situation dependent!
– Consider one MPI process on each CPU and one OpenMP thread

per available core within each process
• Often gives results almost as good as a fully optimized one-process-per-

node code (with OpenMP threads across all of the cores on the node) with
significantly less development overhead

46 OLCF Spring ‘11

OpenMP
aprun depth
• Must get “aprun –d” correct

–  -d (depth) Specifies the number of threads (cores) for each
process. ALPS allocates the number of cores equal to depth
times processes.

–  The default depth is 1. This option is used in conjunction with
the OMP_NUM_THREADS environment variable.

– Also used to get more memory per process
• Get 1 or 2 GB limit by default (machine dependent)

– Many have gotten this wrong, so it is important to understand
how to use it properly!
•  If you do not do it correctly, a hybrid OpenMP/MPI code can get multiple

threads spawned on the same core which can be disastrous.

47 OLCF Spring ‘11

OpenMP
aprun depth (cont.)
 % setenv OMP_NUM_THREADS 4

 % aprun -n 4 -q ./omp1 | sort
 Hello from rank 0, thread 0, on nid00291. (core affinity = 0)
 Hello from rank 0, thread 1, on nid00291. (core affinity = 0)
 Hello from rank 0, thread 2, on nid00291. (core affinity = 0)
 Hello from rank 0, thread 3, on nid00291. (core affinity = 0)
 Hello from rank 1, thread 0, on nid00291. (core affinity = 1)
 Hello from rank 1, thread 1, on nid00291. (core affinity = 1)
 Hello from rank 1, thread 2, on nid00291. (core affinity = 1)
 Hello from rank 1, thread 3, on nid00291. (core affinity = 1)
 Hello from rank 2, thread 0, on nid00291. (core affinity = 2)
 Hello from rank 2, thread 1, on nid00291. (core affinity = 2)
 Hello from rank 2, thread 2, on nid00291. (core affinity = 2)
 Hello from rank 2, thread 3, on nid00291. (core affinity = 2)
 Hello from rank 3, thread 0, on nid00291. (core affinity = 3)
 Hello from rank 3, thread 1, on nid00291. (core affinity = 3)
 Hello from rank 3, thread 2, on nid00291. (core affinity = 3)
 Hello from rank 3, thread 3, on nid00291. (core affinity = 3)

 % setenv OMP_NUM_THREADS 4

 % aprun -n 4 -d 4 -q ./omp | sort
 Hello from rank 0, thread 0, on nid00291. (core affinity = 0)
 Hello from rank 0, thread 1, on nid00291. (core affinity = 1)
 Hello from rank 0, thread 2, on nid00291. (core affinity = 2)
 Hello from rank 0, thread 3, on nid00291. (core affinity = 3)
 Hello from rank 1, thread 0, on nid00291. (core affinity = 4)
 Hello from rank 1, thread 1, on nid00291. (core affinity = 5)
 Hello from rank 1, thread 2, on nid00291. (core affinity = 6)
 Hello from rank 1, thread 3, on nid00291. (core affinity = 7)
 Hello from rank 2, thread 0, on nid00292. (core affinity = 0)
 Hello from rank 2, thread 1, on nid00292. (core affinity = 1)
 Hello from rank 2, thread 2, on nid00292. (core affinity = 2)
 Hello from rank 2, thread 3, on nid00292. (core affinity = 3)
 Hello from rank 3, thread 0, on nid00292. (core affinity = 4)
 Hello from rank 3, thread 1, on nid00292. (core affinity = 5)
 Hello from rank 3, thread 2, on nid00292. (core affinity = 6)
 Hello from rank 3, thread 3, on nid00292. (core affinity = 7)

48

All on core 0
One thread
per core as
desired!!!

OLCF Spring ‘11

OpenMP – Scope all variables!

 int i, j, k;

 #pragma omp parallel shared(t, new, old,
nrl, dt, NR, NC, NITER) private(d)

 #pragma omp for schedule(runtime) nowait

 for (i = 2; i <= nrl-1; i++)

 for (j = 1; j <= NC; j++){

 t[*new][i][j] = 0.25 *

 (t[old][i+1][j] + t[old][i-1][j] +

 t[old][i][j+1] + t[old][i][j-1]);

 d = MAX(fabs(t[*new][i][j] –

 t[old][i][j]), d);

 int i, j, k;

#pragma omp parallel shared(t, new, old, nrl,
dt, NR, NC, NITER) private(d,i,j)

 #pragma omp for schedule(runtime) nowait

 for (i = 2; i <= nrl-1; i++)

 for (j = 1; j <= NC; j++){

 t[*new][i][j] = 0.25 *

 (t[old][i+1][j] + t[old][i-1][j] +

 t[old][i][j+1] + t[old][i][j-1]);

 d = MAX(fabs(t[*new][i][j] –

 t[old][i][j]), d);

49 OLCF Spring ‘11

In this particular case, the homb benchmark got wrong answers and
failed to scale well when using PGI and Pathscale.

Closing Remarks

50 OLCF Spring ‘11

Last words
• MPT provides optimized, high-performance communication

–  Sometimes requires guidance and tuning – also patience and perseverance

• Environment variables are an easy way to improve performance
–  Familiarize yourself with ‘man mpi’ and remain up-to-date

•  The is no replacement for good MPI programming practices
–  Pre-posting receives, overlap computation and communication, reduce

collective communications, aggregate data for communication

• Rank reordering can significantly improve performance
• Use depth option to aprun with OpenMP
• Remember your parallel I/O – it can be crippling
• Some of this may not show a benefit at <1K processes, but it can

reap huge gains at 10K to 100K processes
•  Thanks to Jeff Larkin of Cray for permission to use his slides

51 OLCF Spring ‘11

